Virial coefficients for the square-well potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24289
(http://iopscience.iop.org/0305-4470/24/1/035)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:22

Please note that terms and conditions apply.

Virial coefficients for the square-well potential

Nagat Abdel Rahman Hussein and Said Mohamed Ahmed
Department of Mathematics, University of Assiut, Assiut 71516, Egypt

Received 12 June 1990

Abstract

The aim of the present work is to derive exact expressions for the second and third virial coefficients $B(T)$ and $C(T)$ for fluids of molecules interacting according to the square-well potential of arbitrary well width and arbitrary dimensionality d. General expressions for the terms of the fourth virial coefficient $D(T)$, where $D(T)=$ $D_{1}(T)+D_{2}(T)+D_{3}(T)$ are obtained when the width of the attractive well is equal to the radius of the hard sphere. For $d=3$ and 1 , the values of D_{1}, D_{2} are analytically obtained, whereas D_{3} is computed numerically.

1. Introduction

The virial coefficients B, C, D, \ldots are defined as the coefficients in the equation of state for fluids

$$
\begin{equation*}
\frac{P}{K T}=\rho+B \rho^{2}+C \rho^{3}+D \rho^{4}+\ldots \tag{1.1}
\end{equation*}
$$

where P is the pressure, K is the Boltzmann constant, T is the absolute temperature and ρ is the density.

For the square-well potential, the virial coefficients up to the third have been calculated by Kihara [1] for the attractive well for all values of the range parameter g (see equation (2.3)). The fourth virial coefficient has been calculated for $g=2$ by Katsura [2, 3] and Barker and Monaghan [4]. Hauge [5] gave expressions, valid for arbitrary g, for the integrals contributing to the fourth virial coefficient.

In d dimensions, Luban and Baram [6] derived exact expressions for the third virial coefficient and two of the three terms contributing to the fourth virial coefficient for an assembly of hard hypersphere (d is arbitrary). Ree and Hoover [7] calculated the fourth virial coefficient for a hard sphere ($1 \leqslant d \leqslant 9$). Kreimer et al [8] calculated the third virial coefficient for the Lennard-Jones potential $(d=2,3)$.

In this paper we use the method of Luban and Baram [6], which is based on re-expressing the configuration multiple integrals as multiple integrals in k-space with integrands involving products of Bessel functions and the method of Katsura [2,3] which is based on Fourier transforms and the addition theorem of Bessel functions.

2. Calculation of $B(T)$ and $C(T)$

The second and third virial coefficients are given by

$$
\begin{equation*}
B(T)=-\frac{1}{2} \int f(r) \mathrm{d} r \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
C(T)=-\frac{1}{3} \int f\left(r_{1}\right) f\left(\boldsymbol{r}_{2}\right) f\left(\left|\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right|\right) \mathrm{d} \boldsymbol{r}_{1} \mathrm{~d} \boldsymbol{r}_{2} \tag{2.2}
\end{equation*}
$$

where

$$
f(r)=\exp \left(\frac{-U(r)}{K T}\right)-1
$$

and $U(r)$ is the intermolecular potential between two molecules separated by a distance r.

For the square-well potential, the function $f(r)$ is given by

$$
f(r)= \begin{cases}-1 & r<\sigma \tag{2.3}\\ f=\exp (\varepsilon / K T)-1 & \sigma<r<g \sigma \\ 0 & g \sigma<r\end{cases}
$$

where σ is the diameter of the hard sphere, g is the range of the attractive well and ε is the well depth.

When the integrand of a d-dimensional integral possesses spherical symmetry [6], we have

$$
\begin{equation*}
\int H(r) \mathrm{d}^{d} r=C_{d} \int_{0}^{\infty} H(r) r^{d-1} \mathrm{~d} r \tag{2.4}
\end{equation*}
$$

whereas if H is a function of r and a single polar angle θ,

$$
\begin{equation*}
\int H(r, \theta) \mathrm{d}^{d} r=C_{d-1} \int_{0}^{\infty} r^{d-1} \mathrm{~d} r \int_{0}^{\infty} H(r, \theta) \sin ^{d-2} \theta \mathrm{~d} \theta \tag{2.5}
\end{equation*}
$$

The quantity C_{d} is defined by

$$
\begin{equation*}
C_{d}=\frac{2 \pi d / 2}{\Gamma(d / 2)} \tag{2.6}
\end{equation*}
$$

The d-dimensional Fourier transform $F_{d}(k)$ of $f(r)$ is defined by

$$
\begin{align*}
F_{d}(k) & =\int f(r) \exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}) \mathrm{d} \boldsymbol{r} \\
& =\int f(r) \exp (\mathrm{i} k r \cos \theta) \mathrm{d} r \tag{2.7}
\end{align*}
$$

From (2.7), (2.5) and (2.3), we get

$$
\begin{align*}
F_{d}(k)=C_{d-1}[& -\int_{0}^{\sigma} r^{r-1} \mathrm{~d} r \int_{0}^{\pi} \exp (\mathrm{i} k r \cos \theta) \sin ^{d-2} \theta \mathrm{~d} \theta \\
& \left.+f \int_{\sigma}^{g_{r}} r^{d-1} \mathrm{~d} r \int_{0}^{\pi} \exp (\mathrm{i} k r \cos \theta) \sin ^{d-2} \theta \mathrm{~d} \theta\right] \tag{2.8}
\end{align*}
$$

Using the following standard identities for Bessel functions,

$$
\begin{align*}
& J_{\nu}(x)=\frac{(x / 2)^{\nu}}{\pi^{1 / 2} \Gamma\left(\nu+\frac{1}{2}\right)} \int_{0}^{\pi} \exp (\mathrm{i} x \cos \theta) \sin ^{2 \nu} \theta \mathrm{~d} \theta \tag{Re}\\
& \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{\nu} J_{\nu}(x)\right)=x^{\nu} J_{\nu-1}(x)
\end{align*}
$$

we have

$$
\begin{equation*}
F_{d}(k)=\left(\frac{2 \pi \sigma}{k}\right)^{d / 2}\left[g^{d / 2} f J_{d / 2}(g \sigma k)-(1+f) J_{d / 2}(\sigma k)\right] \tag{2.11}
\end{equation*}
$$

The calculation of $B(T)$ is quite trivial. Using (2.1), (2.3) and (2.4), one obtains

$$
\begin{equation*}
B(T)=\frac{C_{d}}{2^{d}} \sigma^{d}\left[1-\left(g^{d}-1\right) f\right] . \tag{2.12}
\end{equation*}
$$

To evaluate the multiple integral in (2.2), giving rise to $C(T)$, we replace the third factor in the integrand by the Fourier representation

$$
\begin{equation*}
f(r)=(2 \pi)^{-d} \int \exp (-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}) F_{d}(k) \mathrm{d} \boldsymbol{k} \tag{2.13}
\end{equation*}
$$

so that

$$
\begin{equation*}
C(T)=-\frac{1}{3}(2 \pi)^{-d} \int\left(E_{d}(k)\right)^{3} \mathrm{~d} k . \tag{2.14}
\end{equation*}
$$

Substitution of (2.11) in (2.14) yields

$$
\begin{align*}
C(T)=\frac{-C_{d}}{3} & (2 \pi)^{d / 2} \sigma^{2 d} \\
& \times\left\{\left[g^{2 d} f^{3}-(1+f)^{3}\right] I_{1}-3 g^{d} f^{2}(1+f) I_{2}+3 g^{d / 2} f(1+f)^{2} I_{3}\right\} \tag{2.15}
\end{align*}
$$

where

$$
\begin{aligned}
& x=\sigma k \\
& I_{1}=\int_{0}^{\infty}\left(J_{d / 2}(x)\right)^{3} x^{-(1+d / 2)} \mathrm{d} x \\
& I_{2}=\int_{0}^{\infty}\left(J_{d / 2}(g x)\right)^{2}\left(J_{d / 2}(x)\right) x^{-(1+d / 2)} \mathrm{d} x \\
& I_{3}=\int_{0}^{\infty}\left(J_{d / 2}(g x)\right)\left(J_{d / 2}(x)\right)^{2} x^{-(1+d / 2)} \mathrm{d} x
\end{aligned}
$$

where I_{1} is given as in Luban and Baram [6].
The integrals I_{2} and I_{3} can be expressed using the following standard formula ([9], p 231, equation (21)),

$$
\begin{aligned}
& \int_{0}^{\infty} x^{\alpha-1} J_{\lambda}(b x) J_{\mu}(b x) J_{v}(c x) \mathrm{d} x \\
&= \frac{2^{-2} c^{1-\alpha}}{b} \Gamma\left[\begin{array}{c}
\frac{\nu+\alpha-1}{2} \\
\left.\frac{1+\mu-\lambda}{2}, \frac{1+\lambda-\mu}{2}, \frac{\nu+3-\alpha}{2}\right] \\
\end{array}\right. \\
& \times{ }_{4} F_{3}\left(\frac{1-\lambda-\mu}{2}, \frac{1+\lambda-\mu}{2}, \frac{1-\lambda+\mu}{2}, \frac{1+\lambda+\mu}{2} ;\right. \\
&\left.\frac{1}{2}, \frac{3-\alpha-\nu}{2}, \frac{3-\alpha+\nu}{2} ; \frac{C^{2}}{4 b^{2}}\right)+2^{\prime \prime-1} b^{-\alpha-{ }^{\prime}} c^{\prime \prime}
\end{aligned}
$$

$$
\begin{align*}
& \times \Gamma\left[\begin{array}{c}
1-\alpha-\nu, \frac{\alpha+\lambda+\mu+\nu}{2} \\
\times 1+\frac{\mu+\lambda+\alpha+\nu}{2}, 1+\frac{\mu-\lambda-\alpha-\nu}{2}, 1+\frac{\lambda-\mu-\alpha-\nu}{2}, 1+\nu
\end{array}\right] \\
& \times{ }_{4} F_{3}\left(\frac{\alpha+\nu-\mu-\lambda}{2}, \frac{\alpha+\nu-\mu+\lambda}{2}, \frac{\alpha+\nu+\mu-\lambda}{2}, \frac{\alpha+\nu+\mu+\lambda}{2}\right. \\
& \left.\times \frac{1+\alpha+\nu}{2}, \frac{\alpha+\nu}{2}, 1+\nu ; \frac{C^{2}}{4 b^{2}}\right) \\
& -\frac{2^{\alpha-3} C^{2-\alpha}(\mu+\lambda)}{b^{2}} \Gamma\left[\frac{\mu-\lambda}{2}, \frac{\lambda-\mu}{2}, 2+\frac{\nu-\alpha}{2}\right] \\
& \times{ }_{4} F_{3}\left(1-\frac{\mu+\lambda}{2}, 1+\frac{\lambda-\mu}{2}, 1+\frac{\mu-\lambda}{2}, 1+\frac{\mu+\lambda}{2}\right. \\
& \left.\frac{3}{2}, 2-\frac{\nu+\alpha}{2}, 2+\frac{\nu-\alpha}{2} ; \frac{C^{2}}{4 b}\right) \tag{2.16}
\end{align*}
$$

which applies as long as $\left(0<c<2 b ;-\operatorname{Re}(\mu+\nu+\lambda)<\operatorname{Re} \alpha<\frac{5}{2}\right)$. Thus we have

$$
\begin{align*}
& I_{2}=\frac{2^{-(d / 2+2)} \Gamma\left(-\frac{1}{2}\right)}{g\left(\Gamma\left(\frac{1}{2}\right)\right)^{2} \Gamma((3+d) / 2)}{ }_{4} F_{3}\left(\frac{1-d}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1+d}{2} ; \frac{1}{2}, \frac{3}{2}, \frac{3+d}{2} ; \frac{1}{4 g^{2}}\right) \\
&+\frac{2^{-(1+d / 2)} \Gamma(d / 2)}{[\Gamma(1+d / 2)]^{2}}{ }_{4} F_{3}\left(-\frac{d}{2}, 0,0, \frac{d}{2} ; \frac{1}{2}, 0,1+\frac{d}{2} ; \frac{1}{4 g^{2}}\right) \\
&+\frac{2^{-(d / 2+3)} d}{g^{2}} \frac{\Gamma(-1)}{(\Gamma(0))^{2} \Gamma(2+d / 2)} \\
& \times{ }_{4} F_{3}\left(1-\frac{d}{2}, 1,1,1+\frac{d}{2} ; \frac{3}{2}, 2,2+\frac{d}{2} ; \frac{1}{4 g}\right) . \tag{2.17}
\end{align*}
$$

The function is usually referred to as a generalized hypergeometric function, where the function ${ }_{4} F_{3}$ is the usual hypergeometric function which admits the power series representation of the general form

$$
\begin{align*}
{ }_{4} F_{3}\left(\alpha_{1}, \alpha_{2},\right. & \left.\alpha_{3}, \alpha_{4} ; B_{1}, B_{2}, B_{3} ; x\right) \\
& =\sum_{n=0} \frac{\left(\alpha_{1}\right)_{n}\left(\alpha_{2}\right)_{n}\left(\alpha_{3}\right)_{n}\left(\alpha_{4}\right)_{n}}{n!\left(B_{1}\right)_{n}\left(B_{2}\right)_{n}\left(B_{3}\right)_{n}} x^{n} \quad(|x|<1) . \tag{2.18}
\end{align*}
$$

It must be noted that, in the above function, when the number of α, s which are equal to zero is more than the number of B_{i} s which are equal to zero, then ${ }_{4} F_{3}=1$. When $\alpha_{i}=B_{j}$, for any $i, j,{ }_{4} F_{3}$ becomes equal to ${ }_{3} F_{2}$. When zero or negative integer occurs in the denominator of the constant factor of any term containing ${ }_{4} F_{3}$, then this must be equal to zero. Using the above properties of ${ }_{4} F_{3}$, and the properties of a gamma function ([10], vol I, pp 3, 4, equations (1), (10)) we get

$$
\begin{gather*}
I_{2}=\frac{-2^{-(d / 2+1)}}{g \pi^{1 / 2} \Gamma((3+d) / 2)}{ }_{3} F_{2}\left(\frac{1-d}{2}, \frac{1}{2}, \frac{1+d}{2} ; \frac{3}{2}, \frac{3+d}{2} ; \frac{1}{4 g^{2}}\right) \\
+\frac{2^{(1-d / 2)}}{d^{2} \Gamma(d / 2)} \quad \text { for } 0.5 \leqslant g . \tag{2.19}
\end{gather*}
$$

Also, using (2.16), we have

$$
\begin{align*}
I_{3}=\left(\frac{g}{2}\right)^{d / 2} & \frac{2}{d^{2} \Gamma(d / 2)}-\frac{1}{\pi^{1 / 2} \Gamma((3+d) / 2)} \\
& \quad \times{ }_{3} F_{2}\left(\frac{1-d}{2}, \frac{1}{2}, \frac{1+d}{2} ; \frac{3}{2}, \frac{3+d}{2} ; \frac{g^{2}}{4}\right) \quad \text { for } g \leqslant 2 . \tag{2.20}
\end{align*}
$$

For $g \geqslant 2$, we use the following standard formula ([9], p 231, equation (20)),

$$
\begin{aligned}
& \int_{0}^{\infty} x^{\alpha-1} J_{\lambda}(b x) J_{\mu}(b x) J_{\nu}(c x) \mathrm{d} x \\
&= 2^{\alpha-1} b^{\mu+\lambda} c^{-\alpha-\mu-\lambda} \Gamma\left[\begin{array}{c}
\frac{\alpha+\mu+\lambda+\nu}{2} \\
1+\mu, 1+\lambda, 1+\frac{\nu-\alpha-\mu-\lambda}{2}
\end{array}\right] \\
& \times{ }_{4} F_{3}\left(\frac{\alpha+\mu+\lambda-\nu}{2}, \frac{\alpha+\mu+\lambda+\nu}{2}, \frac{1+\mu+\lambda}{2}, 1+\frac{\mu+\lambda}{2} ;\right. \\
&\left.\times 1+\mu+\lambda, 1+\mu, 1+\lambda ; \frac{4 b^{2}}{c^{2}}\right)
\end{aligned}
$$

which applies as long as $\left(0<2 b<c ;-\operatorname{Re}(\mu+\nu+\lambda) \operatorname{Re} \alpha<\frac{5}{2}\right)$. Then

$$
\begin{equation*}
I_{3}=\frac{2(2 g)^{-d / 2}}{d^{2} \Gamma(d / 2)} \quad g \geqslant 2 . \tag{2.21}
\end{equation*}
$$

From (2.20) and (2.21), we have

$$
I_{3}=\left\{\begin{array}{l}
\frac{2(2 g)^{-d / 2}}{d^{2} \Gamma(d / 2)} \quad g \geqslant 2 \\
\frac{2}{d^{2} \Gamma(d / 2)}\left(\frac{g}{2}\right)^{d / 2}-\frac{(g / 2)^{d / 2+1}}{\pi^{1 / 2} \Gamma((3+d) / 2)} \tag{2.22}\\
\quad \times{ }_{3} F_{2}\left(\frac{1-d}{2}, \frac{1}{2}, \frac{1+d}{2} ; \frac{3}{2}, \frac{3+d}{2} ; \frac{g^{2}}{4}\right) \quad g \leqslant 2 .
\end{array}\right.
$$

Substituting (2.16), (2.19) and (2.20) into (2.15), we get

$$
\begin{aligned}
& \frac{C(T)}{b}=2\left\{\left[(1+f)^{3}-g^{2 d} f^{3}\right]\left[1-\frac{1}{B\left(\frac{1}{2},(1+d) / 2\right)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2}, \frac{3}{2}, \frac{1}{4}\right)\right]\right. \\
&-\frac{2 d g^{d-1} f^{2}(1+f)}{(d+1) B\left(\frac{1}{2},(1+d) / 2\right)}{ }_{3} F_{2}\left(\frac{1-d}{2}, \frac{1}{2}, \frac{1+d}{2} T ; \frac{3}{2}, \frac{3+d}{2} ; \frac{1}{4 g^{2}}\right) \\
&-\frac{2}{d} g^{d} f(1+f)+\frac{2 d g^{d+1}}{(d+1) B\left(\frac{1}{2},(1+d) / 2\right)} f(1+f)^{2} \\
&\left.\times{ }_{3} F_{2}\left(\frac{1-d}{2}, \frac{1}{2}, \frac{1+d}{2} ; \frac{3}{2}, \frac{3+d}{2} ; \frac{g^{2}}{4}\right)\right\} \quad 1 \leqslant g \leqslant 2
\end{aligned}
$$

$$
\begin{align*}
= & 2\left\{\left[(1+f)^{3}-g^{2 d} f^{3}\right]\left[1-\frac{1}{B\left(\frac{1}{2},(1+d) / 2\right)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{1}{4}\right)\right]\right. \\
& -\frac{2 d g^{d-1} f^{2}(1+f)}{(d+1) B\left(\frac{1}{2},(1+d) / 2\right)}{ }_{3} F_{2}\left(\frac{1-d}{2}, \frac{1}{2}, \frac{1+d}{2} ; \frac{3}{2}, \frac{3+d}{2} ; \frac{1}{4 g^{2}}\right) \\
& \left.-2 f(1+f)\left[1-\left(g^{d}-1\right) f\right]\right\} \quad g \geqslant 2 \tag{2.23}
\end{align*}
$$

where

$$
\begin{equation*}
b=\frac{\sigma^{d}}{2 d} c_{d} \tag{2.24}
\end{equation*}
$$

is the value of the second virial coefficient of the hard hypersphere.
For odd integer dimensionalities, each of the hypergeometric series in (2.23) terminates after $(d+1) / 2$ terms. For even-integer dimensionalities, each of the hypergeometric series in (2.23) does not terminate.

If $d=2 N$ (see [6]), we have

$$
\begin{align*}
& 2\left[1-\frac{1}{B\left(\frac{1}{2},(1+d) / 2\right)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{1}{4}\right)\right] \\
& \quad=\frac{4}{3}-\frac{N!}{\pi^{1 / 2} \Gamma\left(N+\frac{1}{2}\right)}\left(\frac{3}{4}\right)^{N-1 / 2}{ }_{2} F_{1}\left(1, N+1 ; \frac{3}{2} ; \frac{1}{4}\right)_{N} \tag{2.25}
\end{align*}
$$

where the subscript on ${ }_{2} F_{1}$ denotes the parital sum of the first N terms of the infinite series of ${ }_{2} F_{1}$. For $N=0$ this partial sum is zero.

Thus, for even integer dimensionalities, we obtain

$$
\begin{align*}
& \frac{C(T)}{b}=\left[(1+f)^{3}-2^{4 N} f^{3}\right]\left(\frac{4}{3}-\frac{N!}{\pi^{1 / 2} \Gamma\left(N+\frac{1}{2}\right)}\left(\frac{3}{4}\right)^{(N-1) / 2}\right){ }_{2} F_{1}\left(1, N+1 ; \frac{3}{2} ; \frac{1}{4}\right)_{N} \\
&-\frac{8 N g^{d} f^{2}(1+f)}{g(2 N+1) B\left(\frac{1}{2},(1+2 N) / 2\right)}{ }_{3} F_{2}\left(\frac{1-2 N}{2}, \frac{1}{2}, \frac{1+2 N}{2} ; \frac{3}{2}, \frac{3+2 N}{2} ; \frac{1}{4 g^{2}}\right) \\
&-\frac{4}{N} g^{2 N} f(1+f)+\frac{8 N g^{2 N+1}}{(2 N+1) B\left(\frac{1}{2},(1+2 N) / 2\right)} f(1+f)^{2} \\
& \times{ }_{3} F_{2}\left(\frac{1-2 N}{2}, \frac{1}{2}, \frac{1+2 N}{2} ; \frac{3}{2}, \frac{3+2 N}{2} ; \frac{g^{2}}{4}\right) \quad 1 \leqslant g \leqslant 2 \\
&= {\left[(1+f)^{3}-2^{4 N} f^{3}\right]\left(\frac{4}{3}-\frac{N}{\pi^{1 / 2} \Gamma\left(N+\frac{1}{2}\right)}\left(\frac{3}{4}\right)^{(N-1) / 2}\right){ }_{3} F_{1}\left(1, N+1 ; \frac{3}{2} ; \frac{1}{4}\right)_{N} } \\
&-\frac{8 N g^{d-1} f^{2}(1+f)}{(2 N+1) B\left(\frac{1}{2},(1+2 N) / 2\right)}{ }_{3} F_{2}\left(\frac{1-2 N}{2}, \frac{1}{2}, \frac{1+2 N}{2} ; \frac{3}{2}, \frac{3+2 N}{2} ; \frac{1}{4 g^{2}}\right) \\
&-4 f(1+f)\left[1-\left(g^{d}-1\right) f\right] \quad g \geqslant 2 . \tag{2.26}
\end{align*}
$$

For non-integral values of d, the hypergeometric series in (2.23) can be easily evaluated on a computer, since these converge very rapidly.

In table 1 we have listed closed-form results of $C(T) / b^{2}$ for assorted odd-integer dimensionalities d and numerical results with good approximations for even-integer dimensionalities d. It is interesting to observe that all of the first terms of our results

Table 1. The values of $C(T) / b^{2}$ for $g=2$ for assorted integer dimensionalities.

d	$\frac{C(T)}{b^{2}}$
0	$\frac{4}{3}$
1	$1-f+2 f^{2}$
2	$\frac{4}{3}-\frac{\sqrt{3}}{\pi}-1.65398 f+6.972 f^{2}-3.104 f^{3}$
3	$\frac{1}{2^{3}}{ }^{3}\left(5-17 f+136 f^{2}-162 f^{3}\right)$
4	$\frac{4}{3}-\frac{3 \sqrt{3}}{2 \pi}-2.48694 f+40.74347 f^{2}-86.023 f^{3}$
5	$\frac{1}{2^{7}}\left(53-353 f+9316 f^{2}-44550 f^{3}\right)$
6	$\frac{4}{3}-\frac{9 \sqrt{3}}{5 \pi}-2.97717 f+141.7718 f^{2}-1253.6065 f^{3}$
7	$\frac{1}{2^{10}}\left(289-3229 f+328416 f^{2}-4403042 f^{3}\right)$
8	$\frac{4}{3}-\frac{279 \sqrt{3}}{140 \pi}-3.2961 f+517.69498 f^{2}-14889.327 f^{3}$
9	$\frac{1}{2^{15}}\left(6413-111833 f+32166317 f^{2}-164884490 f^{3}\right)$

for odd- and even-integer dimensionalities d, which are the values corresponding to the hard hyperspheres, are the same as those obtained by Luban and Baram [6].

3. The fourth virial coefficient for the square-well potential

3.1. Calculation of $D_{1}(T)$

It is well known that the fourth virial coefficient $D(T)$ is given by

$$
\begin{equation*}
D(T)=D_{1}(T)+D_{2}(T)+D_{3}(T) \tag{3.1.1}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{1}(T)=-\frac{3}{8} \iiint f\left(\boldsymbol{r}_{1}\right) f\left(\boldsymbol{r}_{2}\right) f\left(\left|\boldsymbol{r}_{3}-\boldsymbol{r}_{2}\right|\right) f\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{3}\right|\right) \mathrm{d} \boldsymbol{r}_{1} \mathrm{~d} \boldsymbol{r}_{2} \mathrm{~d} \boldsymbol{r}_{3} \tag{3.1.2}\\
& D_{2}(T)=-\frac{3}{4} \iiint f\left(\boldsymbol{r}_{1}\right) f\left(\boldsymbol{r}_{2}\right) f\left(\boldsymbol{r}_{3}\right) f\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right) f\left(\left|\boldsymbol{r}_{2}-\boldsymbol{r}_{3}\right|\right) \mathrm{d} \boldsymbol{r}_{1} \mathrm{~d} \boldsymbol{r}_{2} \mathrm{~d} \boldsymbol{r}_{3} \tag{3.1.3}
\end{align*}
$$

$$
D_{3}(T)=-\frac{1}{8} \iiint f\left(r_{1}\right) f\left(r_{2}\right) f\left(r_{3}\right) f\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right) f\left(\left|\boldsymbol{r}_{2}-\boldsymbol{r}_{3}\right|\right)
$$

$$
\begin{equation*}
\times f\left(\left|\boldsymbol{r}_{3}-\boldsymbol{r}_{1}\right|\right) \mathrm{d} \boldsymbol{r}_{1} \mathrm{~d} \boldsymbol{r}_{2} \mathrm{~d} \boldsymbol{r}_{3} . \tag{3.1.4}
\end{equation*}
$$

To evaluate the multiple integral in (3.1.2) giving $D_{1}(T)$, we replace the third and fourth factors in the integrand representation, so that

$$
\begin{align*}
& D_{1}(T)=-\frac{3}{8}(2 \pi)^{-2 d}\left(\left[\iint f\left(r_{1}\right) f\left(r_{2}\right) \exp \left(\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{2}-\mathrm{i} \boldsymbol{k} \cdot{ }^{\prime} \boldsymbol{r}_{1}\right) \mathrm{d} \boldsymbol{r}_{1} \mathrm{~d} \boldsymbol{r}_{2}\right]\right. \\
&\left.\times\left\{\int \exp \left[-\mathrm{i} \boldsymbol{r} \cdot\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)\right] \mathrm{d} \boldsymbol{r}_{3} F_{d}(k) F_{d}\left(\boldsymbol{k}^{\prime}\right) \mathrm{d} \boldsymbol{k} \mathrm{~d} \boldsymbol{k}^{\prime}\right\}\right) \\
&=-\frac{3}{8}(2 \pi)^{-2 d}\left[\iint\left(F_{d}(k)\right)^{2}\left(F_{d}\left(k^{\prime}\right)\right)^{2} \delta\left(\left|\boldsymbol{k}-\boldsymbol{k}^{\prime}\right|\right) \mathrm{d} \boldsymbol{k} \mathrm{~d} \boldsymbol{k}^{\prime}\right] \tag{3.1.5}
\end{align*}
$$

where $\delta(a-b)$ is the Dirac δ-function. Then

$$
D_{1}(T)=-\frac{3}{8}(2 \pi)^{-d} \int\left(F_{d}(k)\right)^{4} \mathrm{~d} k
$$

Using (2.4), we get

$$
\begin{equation*}
D_{1}(T)=-\frac{3}{8}(2 \pi)^{-d} C_{d} \int_{0}^{\infty}\left(F_{d}(k)\right)^{4} k^{d-1} \mathrm{~d} k \tag{3.1.6}
\end{equation*}
$$

Inserting (2.11), when $g=2$ for $F_{d}(k)$, in (3.1.6),

$$
\begin{equation*}
D_{1}(T)=-\frac{3}{8}(2 \pi)^{d} \sigma^{2 d} C_{d} \int_{0}^{\infty}\left[2^{d / 2} f J_{d / 2}(2 \sigma k)-(1+f) J_{d / 2}(\sigma k)\right]^{4} k^{-(d+1)} \mathrm{d} k \tag{3.1.7}
\end{equation*}
$$

Using (2.24) and (2.6), we have

$$
\begin{align*}
& \frac{D_{1}(T)}{b^{3}}=-3 d 2^{d}\left(\Gamma\left(\frac{d}{2}+1\right)\right)^{2} \int_{0}^{\infty}\left[2^{d / 2} f J_{d / 2}(2 x)-(1+f) J_{d / 2}(x)\right]^{4} x^{-(d+1)} \mathrm{d} x \\
&=-3 d 2^{d}\left[\Gamma\left(\frac{d}{2}+1\right)\right]^{2}\left\{2^{3 d} f^{4} \int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)^{4}(2 x)^{-(d+1)} \mathrm{d}(2 x)\right. \\
&-4 \times 2^{3 d / 2} f^{3}(1+f) \int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)^{3}\left(J_{d / 2}(x)\right) x^{-(d+1)} \mathrm{d} x \\
&+3 \times 2^{d+1} f^{2}(1+f)^{2} \int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)^{2}\left(J_{d / 2}(x)\right)^{2} x^{-(d+1)} \mathrm{d} x \\
&-2^{d / 2+2} f(1+f)^{3} \int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)\left(J_{d / 2}(x)\right)^{3} x^{-(d+1)} \mathrm{d} x \\
&\left.+(1+f)^{4} \int_{0}^{\infty}\left(J_{d / 2}(x)\right)^{4} x^{-(d+1)} \mathrm{d} x\right\} . \tag{3.1.8}
\end{align*}
$$

From [6], we have

$$
\begin{aligned}
& \int_{\int_{0}}^{\infty}\left(J_{d / 2}(x)\right)^{4} x^{-(d+1)} \mathrm{d} x=\int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)^{4}(2 x)^{-(d+1)} \mathrm{d}(2 x) \\
& =\frac{2}{3 \pi} \frac{\Gamma(d / 2) \Gamma(d)}{\Gamma(3 d / 2)(\Gamma((d+3) / 2))^{2}} F_{2}\left(\frac{1}{2}, 1, \frac{1-d}{2} ; \frac{d+3}{2}, \frac{d+3}{2} ; 1\right) .
\end{aligned}
$$

Thus,

$$
\begin{align*}
& \frac{D_{1}(T)}{b^{3}}=-3 d 2^{d+1}\left(\Gamma\left(\frac{d}{2}+1\right)\right)^{2}\left[\frac{\Gamma(d / 2) \Gamma(d)}{3 \pi \Gamma(3 d / 2)(\Gamma((d+3) / 2))^{2}}\left[2^{3 d} f^{4}+(1+f)^{4}\right]\right. \\
& \times{ }_{3} F_{2}\left(\frac{1}{2}, 1, \frac{1-d}{2} ; \frac{d+3}{2}, \frac{d+3}{2} ; 1\right)-2^{3 d / 2+1} f^{3}(1+f) \\
& \times \int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)^{3}\left(J_{d / 2}(x)\right) x^{-(d+1)} \mathrm{d} x+3\left[2^{d} f^{2}(1+f)^{2}\right] \\
& \times \int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)^{2}\left(J_{d / 2}(x)\right)^{2} x^{-(d+1)} \mathrm{d} x-2^{d / 2+1} f(1+f)^{3} \\
&\left.\times \int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)\left(J_{d / 2}(x)\right)^{3} x^{-(d+1)} \mathrm{d} x\right] \tag{3.1.9}
\end{align*}
$$

For $d=3$ we have
$\left[\frac{D_{1}(T)}{b^{3}}\right]_{d=3}=-\frac{1}{560}\left(544-4075 f-35007 f-99687 f^{3}+139215 f^{4}\right)$
which was obtained by Katsura [2].
To evaluate the integrals in (3.1.9), when $d=1$, we use the standard identity for a Bessel function,

$$
\begin{equation*}
J_{1 / 2}(x)=\left(\frac{2}{\pi x}\right)^{1 / 2} \sin x \tag{3.1.11}
\end{equation*}
$$

Then

$$
\begin{align*}
{\left[\frac{D_{1}(T)}{b^{3}}\right]_{d=1}=} & -3 \pi\left(\frac{2}{3 \pi}\left[8 f^{4}+(1+f)^{4}\right]-\frac{8}{\pi^{2}} f^{3}(1+f)\right. \\
& \times \int_{0}^{\infty}(\sin 2 x)^{3}(\sin x) x^{-4} \mathrm{~d} x+\frac{12}{\pi^{2}} f^{2}(1+f)^{2} \\
& \times \int_{0}^{\infty}(\sin 2 x)^{2}(\sin x)^{2} x^{-4} \mathrm{~d} x-\frac{8}{\pi^{2}} f(1+f)^{3} \\
& \left.\times \int_{0}^{\infty}(\sin 2 x)(\sin x)^{3} x^{-4} \mathrm{~d} x\right) . \tag{3.1.12}
\end{align*}
$$

Using the following standard identities ([11], p 451, equations (10), (12)),

$$
\begin{array}{rlr}
\int_{0}^{\infty}(\sin a x)^{3}(\sin 3 b x) x^{-4} \mathrm{~d} x & =\frac{9 b \pi}{8}\left(a^{2}-b^{2}\right) & (3 b \leqslant a) \\
& =\frac{\pi}{16}\left[8 a^{3}-9(a-b)^{3}\right] \quad(a \leqslant 3 b \leqslant 3 a) \\
\int_{0}^{\infty}(\sin a x)^{2}(\sin b x)^{2} x^{-4} \mathrm{~d} x & =\frac{\pi b^{2}}{6}(3 a-b) \quad(0 \leqslant b \leqslant a)
\end{array}
$$

one finds that

$$
\begin{equation*}
\left[\frac{D_{1}(T)}{b^{3}}\right]_{d=1}=-\frac{1}{2}\left(4-7 f+15 f^{2}-3 f^{3}+3 f^{4}\right) \tag{3.1.13}
\end{equation*}
$$

The first term, -2 , which is the value that corresponds to the hard sphere, agrees with that obatined by Luban and Baram [6].

3.2. Calculation of $D_{2}(T)$

Applying the Fourier transformation to the fourth and fifth factors in the integrand of (3.1.3), we get

$$
\begin{align*}
& D_{2}(T)=-\frac{3}{4}(2 \pi)^{-2 d}\left\{\iint\left[\iint f\left(r_{1}\right) f\left(r_{3}\right) \exp \left(\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{1}-\mathrm{i} \boldsymbol{k}^{\prime} \cdot \boldsymbol{r}_{3}\right) \mathrm{d} \boldsymbol{r}_{1} \mathrm{~d} \boldsymbol{r}_{3}\right]\right. \\
&\left.\left.\times\left[\int f\left(r_{2}\right) \exp \left(\mathrm{i} r_{2}\right)\left|\boldsymbol{k}^{\prime}-\boldsymbol{k}\right|\right) \mathrm{d} r_{2}\right] F_{d}(k) F_{d}\left(k^{\prime}\right) \mathrm{d} \boldsymbol{k} \mathrm{~d} \boldsymbol{k}^{\prime}\right\} . \tag{3.2.1}
\end{align*}
$$

Integration (2.7), (2.3) for $f(r)$ when $g=2$, and using (2.4) for the integration over r, in (3.2.1), then

$$
\begin{gather*}
D_{2}(T)=-\frac{3}{4}(2 \pi)^{-2 d} C_{d}\left\{-\int_{0}^{\sigma}\left[\left(F_{d}(k)\right)^{2} \exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}) \mathrm{d} \boldsymbol{k}\right]^{2} r^{d-1} \mathrm{~d} r+f\right. \\
\left.\times \int_{d}^{2 \sigma}\left[\int\left(F_{d}(k)\right)^{2} \exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}) \mathrm{d} \boldsymbol{k}\right]^{2} r^{d-1} \mathrm{~d} r\right\} \tag{3.2.2}
\end{gather*}
$$

Using (2.6) and (2.5) for the integration over k, we obtain
$D_{2}(T)=\frac{-3 \times 2^{-2 d+1} \pi^{-(d / 2+1)}}{\Gamma(d / 2)(\Gamma((d-1) / 2))^{2}}$

$$
\begin{align*}
& \times\left\{-\int_{0}^{\sigma}\left[\int_{0}^{\infty} k^{d-1} \mathrm{~d} k \int_{0}^{\pi}\left(F_{d}(k)\right)^{2} \sin ^{d-2} \theta \exp (\mathrm{i} k r \cos \theta) \mathrm{d} \theta\right]^{2} r^{d-1} \mathrm{~d} r\right. \\
& +f \int_{\sigma}^{2 \sigma}\left[\int_{0}^{\infty}\left(F_{d}(k)\right)^{2} k^{d-1} \mathrm{~d} k\right. \\
& \left.\left.\times \int_{0}^{\pi} \sin ^{d-2} \theta \exp (\mathrm{i} k r \cos \theta) \mathrm{d} \theta\right]^{2} r^{d-1} \mathrm{~d} r\right\} \tag{3.2.3}
\end{align*}
$$

Using (2.9) for the integration over θ and inserting (2.11) for $F_{d}(k)$ when $g=2$, putting $r=\sigma y, k=x / \sigma$ and using (2.24), we obtain

$$
\begin{align*}
\frac{D_{2}(T)}{b^{3}}=-3 d & 2^{d+1}\left(\Gamma\left(\frac{d}{2}+1\right)\right)^{2}\left\{-\int_{0}^{1}\left[2^{(3 d-2) / 2} f^{2}\right.\right. \\
& \times \int_{0}^{\infty}\left(J_{d / 2}(2 x)\right)^{2}\left(J_{d / 2-1}(y x)\right)(2 x)^{-d / 2} \mathrm{~d}(2 x)-2^{d / 2+1} f(1+f) \\
& \times \int_{0}^{\infty} J_{d / 2}(2 x) J_{d / 2}(x) J_{(d / 2)-1}(y x) x^{-d / 2} \mathrm{~d} x+(1+f)^{2} \\
& \left.\left.\times \int_{0}^{\infty}\left(J_{d / 2}(x)\right)^{2}\left(J_{d / 2-1}(y x)\right) x^{-d / 2} \mathrm{~d} x\right]^{2} y \mathrm{~d} y+f \int_{1}^{2}[]^{2} y \mathrm{~d} y\right\} . \tag{3.2.4}
\end{align*}
$$

where the contents of the second square bracket are the same as that in the first one.

From [6] and equation (3.2.4), we obtain

$$
\begin{align*}
\frac{D_{2}(T)}{b^{3}}=-3 d & 2^{d+1}\left(\Gamma\left(\frac{d}{2}+1\right)\right)^{2}\left(-\int_{0}^{1}\left\{2^{d / 2} f \frac{y^{d / 2-1}}{\Gamma(d / 2+1)}\right.\right. \\
& \times\left[1-\frac{y \Gamma(d / 2+1)}{2^{1 / 2} \Gamma((d+1) / 2)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{y^{2}}{16}\right)\right] \\
& +(1+f)^{2} \frac{y^{d / 2-1}}{2^{d / 2} \Gamma(d / 2+1)} \\
& -\left[1-\frac{y \Gamma(d / 2+1)}{\pi^{1 / 2} \Gamma((d+1) / 2)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{y^{2}}{16}\right)\right]-2^{d / 2+1} f(1+f) \\
& \left.\times \int_{0}^{\infty} J_{d / 2}(2 x) J_{d / 2}(x) J_{(d / 2)-1}(y x) x^{-d / 2} \mathrm{~d} x\right\}^{2} y \mathrm{~d} y \\
& \left.+f \int_{1}^{2}[]^{2} y \mathrm{~d} y\right) . \tag{3.2.5}
\end{align*}
$$

The last integral inside the first square bracket in (3.2.5) can be expressed by using the following standard formula ([11], p 695, equation (4)):

$$
\int_{0} x^{\lambda-\mu-\nu-1} J_{\nu}(a x) J_{\mu}(b x) J_{\lambda}(c x) \mathrm{d} x=\frac{2^{\lambda-\mu-\nu-1}}{c^{\lambda} \Gamma(\mu+1) \Gamma(\nu+1)}
$$

which applies as long as $\operatorname{Re} \lambda>0, \operatorname{Re}(\lambda-\mu-\nu)<\frac{5}{2}, c>b>0,0<a<c-b$. Thus $\int_{0}^{\infty} x^{-d / 2} J_{d / 2}(x) J_{(d / 2)-1}(y x) J_{d / 2}(2 x) \mathrm{d} x=\frac{y^{d / 2-1}}{z^{d} \Gamma(d / 2+1)} \quad 0<y<1$.
Substitution of (3.2.6) into (3.2.5) yields

$$
\begin{align*}
\frac{D_{2}(T)}{b^{3}}=6 b(& \int_{0}^{1}\left\{2^{d} f^{2}\left[1-\frac{y \Gamma(d / 2+1)}{2 \pi^{1 / 2} \Gamma((d+1) / 2)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{y^{2}}{16}\right)\right]+(1+f)^{2}\right. \\
& \left.\times\left[1-\frac{y \Gamma(d / 2+1)}{\pi^{1 / 2}((d+1) / 2)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{y^{2}}{4}\right)\right]+2 f(1+f)\right\}^{2} y^{d-1} \mathrm{~d} y \\
& \left.-2^{d}\left(\Gamma\left(\frac{d}{2}+1\right)\right)^{2} f \int_{1}^{2}\left\{\ldots+\ldots-2^{d / 2+1} f(1+f) I\right\}^{2} y \mathrm{~d} y\right) \tag{3.2.7}
\end{align*}
$$

where the first and second terms of the second set of braces are the same as those in the first set of braces and I is given by

$$
I=\int_{0}^{\infty} J_{d / 2}(2 x) J_{d / 2}(x) J_{(d / 2)-1}(y x) x^{-d / 2} \mathrm{~d} x \quad 1 \leqslant y \leqslant 2
$$

The value of the preceeding integral is obtained (see the appendix) with the result for $\nu>0$ of

$$
\begin{align*}
& \int_{0}^{\infty} J_{\nu}(2 x) J_{\nu}(x) J_{\nu-1}(y x) x^{-\nu} \mathrm{d} x \\
&= \frac{\left(10 y^{2}-y^{4}-9\right)^{\alpha / 2}}{2^{2 \alpha+4} \nu^{2} \pi^{1 / 2} y^{1 / 2}}\left(10 y^{2}-y^{4}-9\right)^{1 / 2} \\
& \times\left[\nu P_{\alpha}^{1-\alpha}\left(\frac{y^{2}-3}{2 y}\right)+\nu 2^{\alpha+2} P_{\alpha}^{-1-\alpha}\left(\frac{y^{2}+3}{4 y}\right)\right] \\
&+4\left(\frac{y}{2}\right)^{-\alpha} P_{\alpha+2}^{-\alpha}\left(\frac{5-y^{2}}{4}\right)-4 P_{\alpha+3}^{-\alpha}\left(\frac{y^{2}-3}{2 y}\right) \quad 1 \leqslant y \leqslant 2 \tag{3.2.8}
\end{align*}
$$

where $\alpha=(2 \nu-3) / 2$ and $P_{\mu}^{\nu}(x)$ is the Legendre function of degree ν and order μ of the first kind.

Substituting (3.2.8) into (3.2.7) we obtain

$$
\begin{align*}
\frac{D_{2}(T)}{b^{3}}=6 d(& \int_{0}^{1}\left\{2^{d} f^{2}\left[1-\frac{y \Gamma(d / 2+1)}{2 \pi^{1 / 2} \Gamma((d+1) / 2)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{y^{2}}{16}\right)\right]+(1+f)^{2}\right. \\
& \left.\times\left[1-\frac{y^{(d / 2+1)}}{\pi^{1 / 2} \Gamma((d+1) / 2)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{y^{2}}{4}\right)\right]-2 f(1+f)\right\}^{2} y^{d-1} \mathrm{~d} y \\
& -3 d 2^{d+1} f\left(\Gamma\left(\frac{d}{2}+1\right)\right)^{2} \int_{1}^{2}\left\{2^{(d / 2)+1} f^{2} \frac{y^{(d / 2)-1}}{d \Gamma(d / 2)}\right. \\
& \times\left[1-\frac{y \Gamma(d / 2+1)}{2 \pi^{1 / 2} \Gamma((d+1) / 2)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{y^{2}}{16}\right)\right]+2^{-d / 2}(1+f)^{2} \\
& \times \frac{y^{(d / 2)-1}}{\Gamma(d / 2+1)}\left[1-\frac{y \Gamma(d / 2+1)}{\pi^{1 / 2} \Gamma((d+1) / 2)}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1-d}{2} ; \frac{3}{2} ; \frac{y^{2}}{4}\right)\right] \\
& -\frac{2^{(1-(d / 2))}}{d^{2} \pi^{1 / 2} y^{1 / 2}}\left(10 y^{2}-y^{4}-9\right)^{(d-3) / 4} f(1+f) \\
& \times\left\{\left[d P_{(d-3) / 2}^{(1-d) / 2}\left(\frac{y^{2}-3}{2 y}\right)+d 2^{(d+1) / 2} P_{(d-3) / 2}^{(1-d) / 2}\left(\frac{y^{2}+3}{4 y}\right)\right]\right. \\
& \times\left(10 y^{2}-y^{4}-9\right)^{1 / 2}-8 P_{(d-3) / 2}^{(3-d) / 2}\left(\frac{y^{2}-3}{2 y}\right)+8\left(\frac{y}{2}\right)^{(3-d) / 2} \\
& \left.\left.\times P_{(d+1) / 2}^{(3-d) 2}\left(\frac{5-y^{2}}{4}\right)\right\}\right)^{2} y \mathrm{~d} y . \tag{3.2.9}
\end{align*}
$$

To calculate the values of $D_{2}(T) / b^{3}$ for $d=3$ and 1 , we use the properties of the Legendre function (see [12]) and of the hypergeometric function ${ }_{2} F_{1}$. Then, we have

$$
\begin{align*}
{\left[\frac{D_{2}(T)}{b^{3}}\right]_{d=3} } & =-\frac{1}{4480}\left(-6347+27369 f-184156 f^{2}\right. \\
& \left.+59427 f^{3}-1518980 f^{4}+918540 f^{5}\right) \tag{3.2.10}
\end{align*}
$$

This result is the same as that obtained by Katsura [2],

$$
\begin{equation*}
\left[\frac{D_{2}(T)}{b^{3}}\right]_{d=1}=\frac{1}{2}\left(7-9 f+36 f^{2}-184 f^{3}-292 f^{4}-112 f^{5}\right) . \tag{3.2.11}
\end{equation*}
$$

The first term, $\frac{7}{2}$, which is the value corresponding to the hard sphere, agrees with that obtained by Luban and Baram [6].

3.3. Calculation of $D_{3}(T)$

Applying the Fourier transformation to the fourth, fifth and sixth factors in the integrand
of (3.1.4), we get

$$
\begin{align*}
& D_{3}(T)=-\frac{1}{8}(2 \pi)^{-3 d} \int \ldots \int f\left(r_{1}\right) f\left(r_{2}\right) f\left(r_{3}\right) \\
& \times \exp \left\{\mathrm{i}\left[\boldsymbol{r}_{1} \cdot\left(\boldsymbol{k}-\boldsymbol{k}^{\prime \prime}\right)+r_{2} \cdot\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right)+r_{3} \cdot\left(\boldsymbol{k}^{\prime \prime}-\boldsymbol{k}^{\prime}\right)\right]\right\} \\
& \times F_{d}(k) F_{d}\left(\boldsymbol{k}^{\prime}\right) F_{d}\left(\boldsymbol{k}^{\prime \prime}\right) \mathrm{d} \boldsymbol{k} \mathrm{~d} \boldsymbol{k}^{\prime} \mathrm{d} \boldsymbol{k}^{\prime \prime} \\
&=-\frac{1}{8}(2 \pi)^{-3 d} \iiint F_{d}(k) F_{d}\left(\boldsymbol{k}^{\prime}\right) F_{d}\left(k^{\prime \prime}\right) F_{d}\left(\left|\boldsymbol{k}-\boldsymbol{k}^{\prime \prime}\right|\right) \\
& \times F_{d}\left(\left|\boldsymbol{k}^{\prime}-\boldsymbol{k}\right|\right) F_{d}\left(\left|\boldsymbol{k}^{\prime \prime}-\boldsymbol{k}^{\prime}\right|\right) \mathrm{d} \boldsymbol{k} \mathrm{~d} \boldsymbol{k}^{\prime} \mathrm{d} \boldsymbol{k}^{\prime \prime} . \tag{3.3.1}
\end{align*}
$$

Inserting (2.11) for $F_{d}(k)$, we obtain

$$
\begin{equation*}
D_{3}(T)=-\frac{1}{8} \sigma^{3 d} \sum_{a_{1} \ldots a_{6}}(1+f)^{n_{1}}\left(-2^{d} f\right)^{n_{2}} I_{d / 2}\left(a_{1}, a_{2}, a_{3} ; a_{4}, a_{5}, a_{6}\right) \tag{3.3.2}
\end{equation*}
$$

where

$$
\begin{align*}
I_{d / 2}\left(a_{1}, a_{2},\right. & \left.a_{3} ; a_{4}, a_{5}, a_{6}\right) \\
= & \iiint h_{d / 2}\left(a_{1} x\right) h_{d / 2}\left(a_{2} x^{\prime}\right) h_{d / 2}\left(a x^{\prime \prime}\right) h_{d / 2}\left(a_{4}\left|x-x^{\prime \prime}\right|\right) h_{d / 2}\left(a_{5}\left|x^{\prime}-x\right|\right) \\
& \times h_{d / 2}\left(a_{6}\left|x^{\prime \prime}-x^{\prime}\right|\right) \mathrm{d} x \mathrm{~d} x^{\prime} x^{\prime \prime} \tag{3.3.3}
\end{align*}
$$

$h_{d / 2}(t)=-\frac{J_{d / 2}(t)}{t^{d / 2}} \quad \sigma k=x \quad \sigma k^{\prime}=x^{\prime} \quad \sigma k^{\prime \prime}=x^{\prime \prime}$.
The summation in (3.3.2) is taken over all combinations $\left\{a_{1}, \ldots, a_{6}\right\}$ where a_{i} takes the values 1,2 amounting to $2=64$ terms, n_{1} and n_{2} represent the number of a_{i} which take the values 1 and 2 , respectively, $\left(n_{1}+n_{2}=6\right)$:

$$
\begin{align*}
D_{3}(T)=-\frac{1}{8} \sigma^{3 d} & \left\{(1+f)^{6} I_{d / 2}(1,1,1 ; 1,1,1)-3(1+f)^{5}\left(2^{d} f\right) I_{d / 2}(2,1,1 ; 1,1,1)\right. \\
& +I_{d / 2}(1,1,1 ; 2,1,1)+3(1+f)^{4}\left(2^{d} f\right)^{2}\left[I_{d / 2}(1,2,2 ; 1,1,1)\right. \\
& \left.+I_{d / 2}(1,1,1 ; 1,2,2)+2 I_{d / 2}(2,1,1 ; 1,2,1)+I_{d / 2}(2,1,1 ; 2,1,1)\right] \\
& -(1+f)^{3}\left(2^{d} f\right)^{3}\left[I_{d / 2}(1,1,1 ; 2,2,2)+3 I_{d / 2}(1,2,2 ; 2,1,1)\right. \\
& +6 I_{d / 2}(2,1,1 ; 2,1,2)+6 I_{d / 2}(1,2,2 ; 1,2,1)+3 I_{d / 2}(2,1,1 ; 1,2,2) \\
& \left.+I_{d / 2}(2,2,2 ; 1,1,1)\right]+3(1+f)^{2}\left(2^{d} f\right)^{4}\left[I_{d / 2}(1,2,2 ; 1,2,2)\right. \\
& +2 I_{d / 2}(1,2,2 ; 2,1,2)+I_{d / 2}(2,2,2 ; 2,1,1) \\
& \left.+I_{d / 2}(2,1,1 ; 2,2,2)\right]-3(1+f)\left(2^{d} f\right)^{5}\left[I_{d / 2}(2,2,2 ; 1,2,2)\right. \\
& \left.\left.+I_{d / 2}(1,2,2 ; 2,2,2)\right]+\left(2^{d} f\right)^{6} I_{d / 2}(2,2,2 ; 2,2,2)\right\} . \tag{3.3.4}
\end{align*}
$$

To decompose $h_{d / 2}\left(a\left|x-x^{\prime}\right|\right)$ in (3.3.3), we use the addition theorem of the Bessel function ([10], vol II, p 101, equation (30)):

$$
\begin{gathered}
w^{-\mu} J(w)=\left(\frac{1}{2} z Z\right)^{-\mu} \Gamma(\mu) \sum_{n=0}(\mu+n) C_{n}^{\mu}(\cos \phi) J_{\mu+n}(z) J_{\mu+n}(Z) \\
\mu \neq 0,-1,-2, \ldots
\end{gathered}
$$

where $w=\left(z^{2}+Z^{2}-2 z Z \cos \phi\right)^{1 / 2}$, and $C_{n}^{\mu}(z)$ is Gegenbauer's polynomial ([10], vol $1, p 175$, equation (4)), which is defined by

$$
\begin{equation*}
C_{n}^{\mu}(z)=2^{\mu-1 / 2}\left(\frac{\Gamma(n+2 \mu) \Gamma\left(\mu+\frac{1}{2}\right)}{n!\Gamma(2 \mu)}\right)\left(z^{2}-1\right)^{1 / 4-\mu / 2} P_{n+\mu-1 / 2}^{1 / 2-\mu}(Z) \tag{3.3.5}
\end{equation*}
$$

Then

$$
\begin{align*}
-h_{d / 2}(a \mid x- & \left.x^{\prime} \mid\right) \\
& =\frac{J_{d / 2}\left[a\left(x^{2}+x^{\prime 2}-2 x x^{\prime} \cos \nu\right)\right]^{1 / 2}}{\left[a\left(x^{2}+x^{\prime 2}-2 x x^{\prime} \cos \nu\right)\right]^{d / 2}} \\
& =(2)^{d / 2} \Gamma\left(\frac{d}{2}\right) \sum_{n=0}\left(\frac{d}{2}+n\right) \frac{J_{(d / 2)+m}(a x) J_{d / 2}\left(a x^{\prime}\right)}{(a x)^{d / 2}\left(a x^{\prime}\right)^{d / 2}} C_{n}^{d / 2}(\cos \nu) \tag{3.3.6}
\end{align*}
$$

where ν is the angle between x and x^{\prime}. Substituting (3.3.6) into (3.3.3) we get

$$
\begin{align*}
I_{d / 2}\left(a_{1}, a_{2}, a_{3} ;\right. & \left.a_{4}, a_{5}, a_{6}\right) \\
= & {\left[(2)^{d / 2} \Gamma\left(\frac{d}{2}\right)\right]^{3}\left(a_{1} a_{2} a_{3}\right)^{-d / 2}\left(a_{4} a_{5} a_{6}\right)^{-d} } \\
& \times \sum_{i=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{d}{2}+l\right)\left(\frac{d}{2}+m\right)\left(\frac{d}{2}+n\right) \\
& \times \iiint J_{d / 2}\left(a_{1} x\right) J_{d / 2}\left(a x^{\prime}\right) J_{d / 2}\left(a_{3} x^{\prime \prime}\right) J_{(d / 2)+1}\left(a_{4} x^{\prime}\right) J_{(d / 2)+1}\left(a_{4} x^{\prime \prime}\right) \\
& \times J_{(d / 2)+m}\left(a_{5} x^{\prime \prime}\right) J_{(d / 2)+m}\left(a_{5} x\right) J_{(d / 2)+n}\left(a_{6} x\right) J_{(d / 2)+n}\left(a_{6} x^{\prime}\right) \\
& \times C_{1}^{d / 2}(\cos \nu) C_{m}^{d / 2}(\cos \nu) C_{n}^{d / 2}\left(\cos \nu^{\prime \prime}\right) \\
& \times(x)^{-3 d / 2}\left(x^{\prime}\right)^{-3 d / 2}\left(x^{\prime \prime}\right)^{-3 d / 2} \mathrm{~d} x \mathrm{~d} x^{\prime} \mathrm{d} x^{\prime \prime} \tag{3.3.7}
\end{align*}
$$

where $\nu, \nu^{\prime}, \nu^{\prime \prime}$ are the angles between x and x^{\prime}, x^{\prime} and $x^{\prime \prime}, x^{\prime \prime}$ and x, respectively.
Using (2.25), equation (3.3.2) becomes
$\frac{D_{3}(T)}{b^{3}}=-\left(\frac{d^{3}}{c_{d}}\right) \sum_{a_{1} \ldots a_{6}}(1+f)^{n_{1}}\left(-2^{d} f\right)^{n / 2} I_{d / 2}\left(a_{1}, a_{2}, a_{3} ; a_{4}, a_{5}, a_{6}\right)$.
The polar coordinates of x, x^{\prime} and $x^{\prime \prime}$ are denoted by $\left(x, \alpha^{\prime}, B\right),\left(x^{\prime}, \alpha^{\prime}, B^{\prime}\right)$ and ($x^{\prime \prime}, \alpha^{\prime \prime}, B^{\prime \prime}$), respectively, their solid angle elements are denoted by $\mathrm{d} \Omega, \mathrm{d} \Omega^{\prime}$ and $\mathrm{d} \Omega^{\prime \prime}$, respectively ($\mathrm{d} \Omega=\sin \alpha \mathrm{d} \alpha \mathrm{d} B$). Then for $d=3$,

$$
\begin{align*}
I_{3 / 2}\left(a_{1}, a_{2},\right. & a_{3} ; \\
= & \left.a_{4}, a_{5}, a_{6}\right) \\
= & (2 \pi)^{3 / 2}\left(a_{1} a_{2} a_{3}\right)^{-3 / 2}\left(a_{4} a_{5} a_{6}\right)^{-3} \sum_{i=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{3}{2}+l\right) \\
& \times\left(\frac{3}{2}+m\right)\left(\frac{3}{2}+n\right) \int \ldots \int J_{3 / 2}\left(a_{1} x\right) J_{3 / 2}\left(a_{2} x^{\prime}\right) J_{3 / 2}\left(a_{3} x^{\prime \prime}\right) \\
& \times J_{(3 / 2)+1}\left(a_{4} x^{\prime}\right) J_{(3 / 2)+l}\left(a_{4} x^{\prime \prime}\right) J_{(3 / 2)+m}\left(a_{5} x^{\prime \prime}\right) J_{(3 / 2)+m}\left(a_{5} x\right) \\
& \times J_{(3 / 2)+n}\left(a_{6} x\right) J_{(3 / 2)+n}\left(a_{6} x^{\prime}\right) C^{3 / 2}(\cos \nu) C_{m}^{3 / 2}\left(\cos \nu^{\prime}\right) \tag{3.3.9}\\
& \times C_{n}^{3 / 2}\left(\cos \nu^{\prime \prime}\right)(x)^{-5 / 2}\left(x^{\prime}\right)^{-5 / 2}\left(x^{\prime \prime}\right)^{-5 / 2} \mathrm{~d} x \mathrm{~d} x^{\prime} \mathrm{d} x^{\prime \prime} \mathrm{d} \Omega \mathrm{~d} \Omega^{\prime} \mathrm{d} \Omega^{\prime \prime}
\end{align*}
$$

where $\mathrm{d} x \mathrm{~d} \Omega=x^{-2} \mathrm{~d} x$ and $\cos \nu=\cos \alpha \cos \alpha^{\prime}+\sin \alpha \sin \alpha^{\prime} \cos \left(B-B^{\prime}\right)$, etc.

Equation (3.3.9) is equivalent to (2.17) in Katsura's paper [2]. Applying his technique used in [3], we obtain the same results. It may be noted that

$$
\begin{align*}
{\left[\frac{D_{3}(T)}{b^{3}}\right]_{d=3}=} & -\frac{1}{8}\left(1.266904-3.7325 f+15.105 f^{2}-74.283 f^{3}\right. \\
& \left.+157.64 f^{4}-294.65 f^{5}+101.97 f^{6}\right) \tag{3.3.10}
\end{align*}
$$

The values of $D_{1}(T), D_{2}(T)$ and $D_{3}(T)$ obtained in (3.1.10), (3.2.10) and (3.3.10) can be used to evaluate the fourth virial coefficient $D(T)$, given by (3.1), which is found to agree with Katsura [3], as follows,

$$
\begin{align*}
{\left[\frac{D(T)}{b^{3}}\right]_{d=3}=} & 0.28695+1.6342 f-23.294 f^{2}+54.648 f^{3}+70.754 f^{4} \\
& -168.20 f^{5}-12.747 f^{6} . \tag{3.3.11}
\end{align*}
$$

For $d=1$, (3.3.7) becomes

$$
\begin{align*}
& I_{1 / 2}\left(a_{1}, a_{2}, a_{3} ; a_{4}, a_{5}, a_{6}\right) \\
& = \\
& =8\left(a_{1} a_{2} a_{3}\right)^{-1 / 2}\left(a_{4} a_{5} a_{6}\right)^{-1} \sum_{1} \sum_{m}^{\prime} \sum_{n}^{\prime}\left(\frac{1}{2}+l\right)\left(\frac{1}{2}+m\right)\left(\frac{1}{2}+n\right) \tag{3.3.12}\\
& \\
& \quad \times N_{m n}\left(a_{1}, a_{5}, a_{6}\right) N_{l n}\left(a_{2}, a_{4}, a_{6}\right) N_{l m}\left(a_{3}, a_{4}, a_{5}\right)
\end{align*}
$$

where

$$
\begin{equation*}
N_{m n}(a, b, c)=(2 \pi)^{1 / 2} \int_{0}^{\infty} J_{1 / 2}\left(a_{i} x\right) J_{1 / 2+m}\left(a_{j} x\right) J_{1 / 2+n}\left(a_{k} x\right) x^{-3 / 2} \mathrm{~d} x \tag{3.3.13}
\end{equation*}
$$

The triple sum in (3.3.12) indicates summation over l, m and n, where l, m, n are zero, all positive even integers, and all positive odd integers.

The necessary integrals of $N_{m n}\left(a_{i}, a_{j}, a_{k}\right)$ can be calculated by using $N_{m n}(a, b, b)$ given by (3.3.13) for $a, b=1,2$. These integrals are calculated one by one. In the numerical calculation, we truncate the triple infinite summation $\Sigma_{1}^{\prime}, \Sigma_{m}^{\prime}, \Sigma_{n}^{\prime}$ to the finite summation in which (l, m, n) is taken to be $(0,0,0),(0,0,2),(0,2,2),(0,0,4)$, $(2,2,2),(1,1,1),(1,1,3),(1,3,3)$, and their permutations. These values are listed in table 2. Then we have

$$
\left[\frac{D_{3}(T)}{b^{3}}\right]_{d=1}=-\left(0.48168+2.92782 f+7.77211 f^{2}-38.00978 f^{3}\right.
$$

$$
\begin{equation*}
\left.-125.47066 f^{4}-137.00834 f^{5}-51.53897 f^{6}\right) \tag{3.3.14}
\end{equation*}
$$

Hence by using (3.1.13), (3.2.11) and (3.3.14), we get

$$
\begin{align*}
{\left[\frac{D(T)}{b^{3}}\right]_{d=1}=} & 1.018 .32-3.9282 f+2.72789 f^{2}-52.49022 f^{3}-22.02934 f^{4} \\
& +81.00834 f^{5}-51.53897 f^{6} . \tag{3.3.15}
\end{align*}
$$

Table 2. The values of $N_{m m}(a, b, c), a, b, c=1$ or 2 .

a, b, c	$1,1,1$	$2,1,1$	$1,2,2$	$2,2,2$	$1,2,1$	$2,1,2$	$1,1,2$	$2,2,1$
N_{00}	$\frac{3}{2}$	0	$\frac{7}{4}$	$\frac{3 \sqrt{2}}{2}$	0	$\frac{7}{4}$	0	$\frac{7}{4}$
N_{22}	$\frac{1}{80}$	0	$\frac{423}{512}$	$\frac{\sqrt{2}}{80}$	$\frac{\sqrt{2}}{20}$	$\frac{293}{20480}$	$\frac{\sqrt{2}}{20}$	$\frac{293}{20480}$
N_{20}	$\frac{1}{8}$	0	$\frac{9}{16}$	$\frac{\sqrt{2}}{8}$	0	$\frac{1}{16}$	0	$\frac{9}{16}$
N_{02}	$\frac{1}{8}$	0	$\frac{9}{16}$	$\frac{\sqrt{2}}{8}$	0	$\frac{9}{16}$	0	$\frac{1}{16}$
N_{40}	$\frac{1}{48}$	0	$\frac{27}{256}$	$\frac{\sqrt{2}}{48}$	0	$\frac{1}{96}$	0	$\frac{27}{256}$
N_{04}	$\frac{1}{48}$	0	$\frac{27}{256}$	$\frac{\sqrt{2}}{48}$	0	$\frac{27}{256}$	0	$\frac{1}{96}$
N_{11}	$\frac{5}{24}$	0	$\frac{27}{64}$	$\frac{5 \sqrt{2}}{24}$	$\frac{\sqrt{2}}{6}$	$\frac{13}{96}$	$\frac{2}{6}$	$\frac{13}{96}$
N_{33}	$\frac{-19}{896}$	0	$\frac{15057}{229376}$	$\frac{-19 \sqrt{2}}{896}$	$\frac{2}{56}$	$\frac{1093}{114688}$	$\frac{2}{56}$	$\frac{1093}{114688}$
N_{13}	$\frac{1}{48}$	$\frac{-\sqrt{2}}{12}$	$\frac{371}{12288}$	$\frac{\sqrt{2}}{48}$	0	$\frac{-45}{256}$	$\frac{\sqrt{2}}{24}$	$\frac{125}{6144}$
N_{31}	$\frac{1}{48}$	$\frac{-\sqrt{2}}{12}$	$\frac{371}{12288}$	$\frac{\sqrt{2}}{48}$	$\frac{\sqrt{2}}{24}$	$\frac{125}{6144}$	0	$\frac{-45}{256}$

Appendix

This appendix is devoted to the evaluation of the integral

$$
\begin{equation*}
I=\int_{0}^{\infty} J_{\nu}(2 x) J_{\nu}(x) J_{\nu-1}(y x) x^{-\nu} \mathrm{d} x \quad 1 \leqslant y \leqslant 2 \tag{A1}
\end{equation*}
$$

Applying the recurrence formula for the Bessel function ([10], vol II, p 12, equation (56))

$$
\begin{equation*}
J_{\nu}(x)=\frac{x}{2 \nu} J_{\nu-1}(x)+J_{\nu+1}(x) \tag{A2}
\end{equation*}
$$

to the first and second factors in (A1), we get

$$
\begin{align*}
& I=\frac{1}{2 \nu^{2}}\left(\int_{0} J_{\nu-1}(x) J_{\nu-1}(2 x) J_{\nu-1}(y x) x^{2-\nu} \mathrm{d} x+\int_{0}^{\infty} J_{\nu-1}(x) J_{\nu+1}(2 x) J_{\nu-1}(y x) x^{2-\nu} \mathrm{d} x\right. \\
&+\int_{0}^{\infty} J_{\nu+1}(x) J_{\nu-1}(2 x) J_{\nu-1}(y x) x^{2-\nu} \mathrm{d} x \\
&\left.+\int_{0}^{\infty} J_{\nu+1}(x) J_{\nu+1}(2 x) J_{\nu-1}(y x) x^{2-\nu} \mathrm{d} x\right) . \tag{A3}
\end{align*}
$$

Applying (A2) to the second and third integrals in (A3), we obtain

$$
\begin{align*}
& I=\frac{1}{2 \nu^{2}}\left(\nu \int_{0}^{\infty} J_{\nu-1}(x) J_{\nu}(2 x) J_{\nu-1}(y z) x^{1-\nu} \mathrm{d} x-\int_{0}^{\infty} J_{\nu-1}(x) J_{\nu-1}(2 x) J_{\nu-1}(y x) x^{2-\nu} \mathrm{d} x\right. \\
&+2 \nu \int_{0}^{\infty} J_{\nu}(x) J_{\nu-1}(2 x) J_{\nu-1}(y x) x^{1-\nu} \mathrm{d} x \\
&\left.+\int_{0}^{\infty} J_{\nu+1}(x) J_{\nu+1}(2 x) J_{\nu-1}(y x) x^{2-\nu} \mathrm{d} x\right) \tag{A4}
\end{align*}
$$

The four integrals in (A4) can be obtained from the standard formula ([11], p 695, equation (9.8))

$$
\int_{0}^{\infty} J_{\mu}(a x) J_{\mu}(b x) J_{\nu}(c x) x^{1-\nu} \mathrm{d} x=\frac{(a b)^{\nu-1}}{(2 \pi)^{1 / 2} c^{\nu}} \sin ^{\nu-1 / 2} V P_{\mu-1 / 2}^{1 / 2-\nu}(\cos V)
$$

which applies as long as $\left(|a-b|<c, a+b ; a, b>0,2 a b \cos v=a^{2}+b^{2} \sim c^{2} ; \operatorname{Re} \mu>-1\right.$, $\operatorname{Re} \nu>-\frac{1}{2}$).

Therefore,

$$
\begin{align*}
& I=\frac{\left(10 y^{2}-y^{4}-9\right)^{\alpha / 2}}{2^{2 \alpha+4} \nu^{2} \pi^{1 / 2} y^{1 / 2}}\left\{(1 0 y ^ { 2 } - y ^ { 4 } - 9) ^ { 1 / 2 } \left[\nu P_{\alpha}^{-1-\alpha}\left(\frac{y^{2}-3}{2 y}\right)\right.\right. \\
&\left.\left.+\nu 2^{\alpha+2} P_{\alpha}^{-1-\alpha}\left(\frac{y^{2}+3}{4 y}\right)\right]+4\left(\frac{y}{2}\right)^{-\alpha} P_{\alpha+2}^{-\alpha}\left(\frac{5-y^{2}}{4}\right)\right] \\
&\left.-4 P_{\alpha}^{-\alpha}\left(\frac{y^{2}-3}{2 y}\right)\right\} \tag{A5}
\end{align*}
$$

where $\alpha=(2 \nu-3) / 2$.

References

[1] Kihara T 1953 Rev. Modern Phys. 25831
[2] Katsura S 1960 Phys. Rev. 115 1417; 1959 Phys. Rev. 1181667
[3] Katsura S 1966 J. Chem. Phys. 453480
[4] Barker J A and Monaghan J J 1962 J. Chem. Phys. 362558
[5] Hauge E H 1963 J. Chem. Phys. 39389
[6] Luban M and Baram A 1982 J. Chem. Phys. 763233
[7] Ree F H and Hoover W G 1964 J. Chem. Phys. 402048
[8] Kreimer B C, Oh B K and Kim S K 1973 Molec. Phys. 26297
[9] Prudnikov A P, Brychkov Yu A and Marichev O I 1986 Integrals and Series vol 2 (New York: Gordon and Breach)
[10] Bateman H 1953 Higher Transcendental Functions (New York: McGraw-Hill)
[11] Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series, and Products 4th edn (New York: Academic)
[12] Arfken G 1970 Mathematical Methods for Physicists 2nd edn (New York: Academic).

