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Virial coefficients for the square-well potential 

Nagat Abdel Rahman Hussein and Said Mohamed Ahmed 
Department of Mathematics, University of Assiut, Assiut 71516. Egypt 

Received 12 June 1990 

Abstract. The aim of the present work is to derive exact expressions for the second and 
third virial coefficients E( T )  and C (  T )  for fluids of  molecules interacting according to the 
square-well potential of arbitrary well width and arbitrary dimensionality d. General 
expressions for the terms of the fourth virial coefficient D ( T ) ,  where D ( T ) =  
D , ( T ) + D , ( T ) + D , ( T )  are obtained when the width of the attractive well is equal to the 
radius of the  hard sphere. Ford = 3  and 1, the values of D , ,  D, are analytically obtained, 
whereas D, is computed numerically. 

1. Introduction 

The virial coefficients B, C, 0,. . . are defined as the coefficients in the equation of state 
for fluids 

_- - p +  B p 2 + C p 3 i  D p 4 t . .  , 
K T  

where P is the pressure, K is the Boltzmann constant, T is the absolute temperature 
and p is the density. 

For the square-well potential, the virial coefficients up to the third have been 
calculated by Kihara [ I ]  for the attractive well for all values of the range parameter 
g (see equation (2.3)). The fourth virial coefficient has been calculated for g = 2  by 
Katsura [2 ,3]  and Barker and Monaghan [4]. Hauge [ 5 ]  gave expressions, valid for 
arbitrary g, for the integrals contributing to the fourth virial coefficient. 

In d dimensions, Luban and Baram [6] derived exact expressions for the third 
virial coefficient and two of the three terms contributing to the fourth virial coefficient 
for an assembly of hard hypersphere (d  is arbitrary). Ree and Hoover [7] calculated 
the fourth virial coefficient for a hard sphere ( I  S d S 9). Kreimer et a/ [8] calculated 
the third virial coefficient for the Lennard-Jones potential ( d  = 2 , 3 ) .  

In this paper we use the method of Luban and Baram [ 6 ] ,  which is based on 
re-expressing the configuration multiple integrals as multiple integrals in k-space with 
integrands involving products of Bessel functions and the method of Katsura [2,3] 
which is based on Fourier transforms and the addition theorem of Bessel functions. 

2. Calculation of B(T)  and C ( T )  

The second and third virial coefficients are given by 

B(T)=-f  f ( r ) d r  I (2.1) 
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where 

and U ( r )  is the intermolecular potential between two molecules separated by a 
distance r. 

For the square-well potential, the function f( r )  is given by 

r < u  
f ( r )  = f =  exp(&/KT) - 1 u < r < g u  [a’ g u < r  

where U is the diameter of the hard sphere, g is the range of the attractive well and 
E is the well depth. 

When the integrand of a d-dimensional integral possesses spherical symmetry [ 6 ] ,  
we have 

H ( r )  ddr = Cd H(r)rd-’ dr  (2 .4)  I lo“ 
I 

whereas if H is a function of r and a single polar angle 0, 

H(r ,8)ddr=Cd- ,  Inm rd-‘ dr  lom H(r, 8) sind-’ 0 do. (2 .5)  

The quantity C, is defined by 

27rd/2 c -~ 
d - T ( d / 2 ) ’  

The d-dimensional Fourier transform Fd(k)  off(r) is defined by 
, 

Fd(k)=  f(r)exp(ik.r)  d r  J =I f ( r )  exp(ikr cos 8) dr. 

From (2 .7) ,  (2 .5)  and (2 .3) ,  we get 

Fd(k)=Cd-,[-l:rrldr I~exp(ikrcosD)sin”-’BdB 

+f 1; rd-l  d r  1; exp(ikr cos 0) sind-2 0 de]. 

Using the following standard identities for Bessel functions, 

(2 .8)  

(x’2)’  exp(ix cos 0) sin’” 0 d0 (Re v > - f )  ( 2 . 9 )  7r‘’2r(y+t) J , ( x ) =  

(2 .10)  d 
dx 
- ( x ” J u ( x ) )  = x ” J , - j ( X )  
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we have 

Fd(k )  = (~)""[g"' if l , ; , (guk) - ( I  +f)Jdlz(uk)]. (2.11) 

The calculation of B ( T )  is quite trivial. Using (2.1), (2.3) and (2.4). one obtains 

(2.12) cd d B( T ) = -  U [ l  -(g" - l)f]. 
2d 

To evaluate the multiple integral in (2.21, giving rise to C( T) , we replace the third 
factor in the integrand by the Fourier representation 

f ( r ) = ( 2 5 ~ - ~  exp(-ik.r)Fd(k) dk (2.13) I 
so that 

C( T ) =  - f ( 2 ~ ) - ~  ( E d ( k ) ) 3  dk. J 
Substitution of (2.11) in (2.14) yields 

(2.14) 

C( T )  = -c, (2?r)""oz" 
3 

X{[g*df3-(1+f)3]11 -3g"fz(l+f)I,+3gd'2f(l+f)213} (2.15) 
where 

x = m k  

I, = ( o ' : ( J ~ i 2 ( ~ ) ) 3 x ~ i ' t d i 2 '  d X 

I2 = 1"- (J~,2"x))2(Jdi2(X))x-'i-td''i d x  

I3 = loy (J,1/2(gx))(Jdi2(x))~x-"t~'~1 dx  

where I, is given as in Luban and Baram [ 6 ] .  

p231, equation (2111, 

I,' x"- 'JA (bx)J, ,  (bx ) J c ,  ( cx) dx 

The integrals I 2  and I3 can be expressed using the following standard formula ([9], 

1 u + a - 1  
2 

I + w - A  I + A - p  u f 3 - a  
2 ' 2 ' 2  

1 - A - w  l+A-p  l - A + w  l + A + w  

1 3 - r r - U  3 - a + u  + 2 " - l b - " - " r "  

2 '  2 ' 2 ' 4 6 '  
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J a+A+p+w 

2 

> I +  

1 - a - U ,  

p + A + a + u  l + p - A - a - v  A - p - a - u  
, l + U  

2 2 2 

l + a + v  a+u 
x- ~ 

2 ' 2  

p - A  p + A  I+*, l+-, I+-, 
2 2 2 '  

3 u + a  v - a  c2 - 2 - - ,  2+-; - 
2' 2 2 46 (2.16) 

which applies as long as (O<c<2b; - R e ( p i + + A ) < R e a < I ) . T h u s  we have 

(2.17) 

The function is usually referred to as a generalized hypergeometric function, where 
the function 4F3 is the usual hypergeometric function which admits the power series 
representation of the general form 

4F3(a1, a2, a3, a,; BI, B,, B3; X) 

(2.18) 

It must be noted that, in the above function, when the number of a,s which are equal 
to zero is more than the number of B,s which are equal to zero, then ,,F3 = 1.  When 
a, = B,, for any i, j ,  4F3 becomes equal to 3F2. When zero or negative integer occurs 
in the denominator of the constant factor of any term containing ,,F3, then this must 
be equal to zero. Using the above properties of 4F3, and the properties of a gamma 
function ([lo], vol I, pp  3,4, equations (I), (10)) we get 

I - d  1 l + d  3 3 + d  1 - 2-idl211J 
F2 ( - - -. - -. - 

g ~ r ' / ~ r ( ( 3 +  d ) / 2 )  2 ' 2 '  2 ' 2 '  2 94g' 
l2 = 

2(I-d12J 
for 0.5 G g. 

d 2 r (  d/2)  
f (2.19) 
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Also, using (2.16), we have 

for g s 2 .  
1 - d  1 I + d  3 3+d  g2 

2 ' 2 '  2 ' 2 '  2 4 

For g a 2 ,  we use the following standard formula ([9], p 231, equation (20 ) ) ,  

lo' x"-'JA( bx)J,( bx)J,(  c x )  dx 

a + p + A + u  
2 

1+p,  l+A,  1+ 
U - a - p - A  I 2 

- 2"-1 b!.+* - .-*-Ar 
C - 

a + p + A - u  a + p + h + u  I + p + A  p + A  , I+--. 
x Z 3 (  2 ' 2  2 '  

X 1 + p  + A, 1 +p, 1 + A ;  7 
C 

which applies as long as ( 0 < 2 b < c ; - R e ( p + v + h ) R e a < i ) .  Then 

From (2.20) and (2.21), we have 

g52. 
I - d  1 l + d  3 3 + d  g2 

2 ' 2 '  2 ' 2 '  2 ' 4  
x p2( - - -. - -. - 

Substituting (2.16). (2.19) and (2.20) into (2.15). we get 

- = 2( [( 1 + J) ' -  g2'f1][ 1 - 
C (  T )  1 1 1 - d 3  1 

>Fa(- - - -)] b B ( f , ( l + d ) / 2 )  2' 2 ' 2 ' 4  

I - d  1 l + d  3 3 + d  1 T ;  - _ .  - 2dg"-'J'( 1 + J )  
I 6( -, - , - - 

( d + l ) N f ,  ( l + d ) / 2 )  2 2 2 2' 2 ' 4g2  

J ( l + J ) '  
2 2dg"+' 
d g d J ( l + J ) + ( d + l ) B ( f ,  ( l + d ) / 2 )  

-- 

x1F2(- I - d  - 1 l + d  3 3 + d  g2 
2 ' 2 '  2 ' 2 '  2 ' 4  

(2.20) 

(2.21) 

(2.22) 
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= 2 { [ ( 1 + f ) ~ - g * " f ~ ]  1-  1 .Fl(- 1 -,-,-)I I - d 3  1 [ B ( t , ( l + d ) / 2 )  2' 2 ' 2 ' 4  

where 

Ud 
b=-c, 

2d 
(2.24) 

is the value of the second virial coefficient of the hard hypersphere. 
Far odd inieger dimensionaiiries, each of the hypergeometric series in (2.23) 

terminates after ( d  + 1)/2 terms. For even-integer dimensionalities, each of the hyper- 
geometric series in (2.23) does not terminate. 

If d = 2 N  (see [ 6 ] ) ,  we have 

(2.25) 

where the subscript on *F,  denotes the parital sum of the first N terms of the infinite 
series of * F , .  For N = 0 this partial sum is zero. 

Thnlr fnr P W P ~  :n+nnnr A;,,.a-s:--ml:+:-- ...a A&.+-:.. I.._0, L". "._.. ".,'6'L ".l(,r.LII"L._IILIL.D) w c  ""l'alll 

1 s g < 2  1 - 2 N  1 1+2N 3 3 + 2 N  gz x 3 F 2 ( ~ , -  2' 2 ' 2 '  2 ' 4  

N + I ; f ; f ) ,  

(2.26) 

For non-integral values of d, the hypergeometric series in (2.23) can be easily evaluated 
on a computer, since these converge very rapidly. 

In table 1 we have listed closed-form results of C( T ) / b *  for assorted odd-integer 
dimensionalities d and numerical results with good approximations for even-integer 
dimensionalities d. It is interesting to observe that all of the first terms of our results 

- sNg"-lf*(1 +f) I -2N 1 1 + 2 N  3 3 + 2 N  1 
(2N+l)B(t ,  ( 1 + 2 N ) / 2 )  

-4f ( l+f ) [ l  -(g" - llfl g 3 2 .  
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Table I .  The values o f  C ( T ) / b ’  for g = 2  for assorted integer dimensionalities. 

295 

C(T) 
b2 

d 

3 

4 

5 

6 

7 

8 

9 

4 
3 
- 

1 -/+2/* 

a l.65398/+6.Y72/2-3.104/’ 
3 1 1  

1 
-’(5-17/+ l36/*- I62f’J 
2’ 

’a 2.486 94/+40.743 47/’-86.023.f’ 
3 211 

I 
- (53 - 353/+93 16/’-445 SO/ ’ )  
2’ 

4 Y& 
3 511 

- (289-3229/+328 416/* -440 3042f’J 
2’0 

4 27Ya 
3 14011 

- (6413- 111  833/+321663 17/’- 164884490.f’) 

2.977 17/+ 141.7718/*- 1253.6065/’ 

1 

3.2961/+517.694 981’- 148 89.327/’ 

I 
2’3 

for odd- and even-integer dimensionalities d, which are the values corresponding to 
the hard hyperspheres, are the same as those obtained by Luban and Baram [ 6 ] .  

3. The fourth virial coefficient for the square-well potential 

3.1. Calculution o f D , ( T )  

It is well known that the fourth virial coefficient D(  T )  is given by 

D ( T )  = DI( T ) +  &(TI+ D3(77 (3.1.1) 

where 

(3.1.4) 
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To evaluate the multiple integral in (3.1.2) giving D,( T), we replace the third and 
fourth factors in the integrand representation, so that 

1 D , ( T ) = - ~ ( ~ v ) - ~ ~  f(r,)f(r2) exp(ik.r,-ik.'r,) dr, dr, 

I) x (  I exp[-ir.(k-k')] dr, F,(k)F,(k') dk dk' 

where S(a - b )  is the Dirac 8-function. Then 

D l ( T ) = - i ( 2 ~ r - ~  (Fd(k))4 d k  I 
Iom 

Using (2.4), we get 

DI( T )  = -;(2a)-"Cd 

Inserting (2.11), when g = 2  for Fd(k) ,  in (3,1.6), 

(F,(k))'k"' dk. 

D ~ ( T ) = - ~ ( ~ V ) ~ U ' ~ C ~  [2d/2fJd/2(2~k)-(1 +f )Jd /2 (uk ) ]4k - 'd" '  dk. 

Using (2.24) and (2.6), we have 

-- Di(T)--3d2d(T(:+l))2 b3 ~ n ~ [ 2 d i 2 f J . i i 2 ( 2 x ) - ( I + f ) J d ~ i ( ~ ) ~ 4 ~ ~ ' d * 1 ' d ~  

- 4 ~ 2 ~ ~ / ~ f ' ( l  +f) Inm ( J , , , ( 2 x ) ) ' ( J , , , ( x ) ) ~ ~ ' ~ + ' '  dx 

From [ 6 ] ,  we have 

(3.1.5) 

(3.1.6) 

(3.1.7) 

(3.1.8) 
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Thus, 

For d = 3 we have 

[ y] = -&(544-4075f-350 07f-996 87f’+ 139 215f4) 

which was obtained by Katsura [2]. 

Bessel function, 

(3.1.10) 
d = l  

To evaluate the integrals in (3.1.9), when d = 1, we use the standard identity for a 

1/2 

JIl,(x) = ($) sin x. (3.1.11) 

Then 

12 
X jOm (sin 2x)’(sin X)X? dx +7 f2( 1 + f ) 2  

n 

8 
x lom (sin 2x)’(sin X)’X-* dx - ~ f ( l  +f)’ 

x lom (sin 2x)(s inx)’~-~  dx). (3.1.12) 

Using the following standard identities ([ll], p 451, equations (lo), (12)), 

9 bn 
8 

lom (sin ax)’(sin 3 b x ) F 4  dx  = - (a’  - b2) ( 3 b s a )  

n 
=- [8a3-9(a - b)’] ( a  s 3 b s  3a)  16 

rrb2 
6 

jom(sin ax)2(sin b ~ ) ~ x - ~ d x = - ( 3 a - b )  (Os b s  a )  

one finds that 

[ y] d = l  = -;(4 - 7f+ 15f’ - 3f’ + 3f4) (3.1.13) 
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The first term, -2, which is the value that corresponds to the hard sphere, agrees with 

N A R Hussein and S M Ahmed 

that obatined by Luban and Baram [ 6 ] .  I 

3.2. Calcularion of D2( 7’) 

Applying the Fourier transformation to the fourth and fifth factors in the integrand 
of (3.1.3), we get 

x [ [  f(r2)exp(ir2)lk‘-kl)dr, Fd(k)Fd(k’)dkdk’  . 1 I (3.2.1) 

Integration (2.7), (2.3) forf(r)  when g = 2 ,  and using (2.4) for the integration over r, 
in (3.2.1). then 

D2(T)=-a(2rr)-2dCd - [(F,(k))’exp(ik.r) dkI2rd-’ dr+f I 1: 
x l , ; ” [ l ( F , ( k ) ) ’ e x p ( i k . r ) d k  1; rd-‘dr  1 (3.2.2) 

Using (2.6) and (2.5) for the integration over k, we obtain 

x (  -1; [ lom k“’ dk  1; ( F d ( k ) ) ’  sind-2 8 exp(ikrcos 8) d 8  Id-’ dr  3’ 
x j: sind-2 8 exp(ikr cos 8) d 8  rd-’ d r  l2 J (3.2.3) 

Using (2.9) for the integration over 8 and inserting (2.11) for F,(k) when g = 2, putting 
r = uy, k = x/u and using (2.24). we obtain 
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From 161 and equation (3.2.4), we obtain 

Y r ( d / 2 + 1 )  
x [ l -  2‘’2r((d+1)/2)‘ 

(3 .2.5)  

The last integral inside the first square bracket in (3.2.5) can be expressed by using 
the following standard formula ([ll], p 695,  equation ( 4 ) ) :  

j ~ x * - ~ ~ ” ~ ’ J ” ( a X ) J ~ ( b x ) J * ( c x )  d x =  P-”-‘ 
c A r ( p  + i)r( U +  1) 

which appliesas long as ReA>O, Re(A-p-u)<g, c > b > O , O < a < c - b .  Thus 

Substitution of (3.2.6) into (3.2.5) yields 

)] + (1 +f 02(= 6b(  (d [ 2‘f2[ 1 - yr(d /2+1)  
b’ 2 n ‘ ” T ( ( d + 1 ) / 2 ) 2  

yr(d/2+1) 2 F t  (’ T , T ; ? ; Q  l - d  yz)]+2f(l+f)]zyd-ldy 
x [ l -  T”’((d + 1 ) / 2 )  

- Z d (  r(f+ 1 ) ) ;  j12 {. . .+. . , - Z d l ” ’ f ( l  + f ) I  1’ y dy ) (3.2.7) 

where the first and second terms of the second set of braces are the same as those in 
the first set of braces and I is given by 

The value of the preceeding integral is obtained (see the appendix) with the result for 
u > o  of 

jam J,(ZX)J,(X)J,~~(YX)X-’ dx 

( 1 0 ~ ’  -y4- 9)”” - - 22“+4u2,,’/2 I 1 2  (10~’- y4 -9) ’ ’2  
Y 

(3.2.8) 
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where a = (2u-3)/2 and P , ( x )  is the Legendre function of degree v and order p of 
the first kind. 

Substituting (3.2.8) into (3.2.7) we obtain 

m = 6 d ( j 0 ' ( 2 d f 2 [ l -  YUd/2+1)  
b3 2 ~ " ~ r ( ( d + l ) / 2 ) ~  

X [ 1 - ~ ' / 2 T ( ( d + l ) / 2 ) 2  ? 1 d / 2 + "  F ' (' - 2' l b d  2 Y2)]-2f(l+f)]2yd-1dy 
' 2 ' 4  

(d/2)-1 

-3d2"+lf( r(:+ 1)) '  jI2[ 2'd'2Ji1f2 :,.(di2) 

YUd/2+1) 
X[ ' -27r"2~( (d+ l ) /2 )2  

X r ~ ~ ~ ~ l ~ [ 1 - " " 2 , . ( ( d + l ) , 2 ) 2  
YUd/2+1)  

2(1-1d/2JJ 

d 2  1/2  ( 1 0 ~ ~ - ~ ~ - 9 ) ' ~ ~ ~ ) / 4 f ( l + f )  - 
" Y  

(3.2.9) 

To calculate the values of D 2 ( T ) / b 3  for d = 3  and 1 ,  we use the properties of the 
Legendre function (see [12]) and of the hypergeometric function >F,.  Then, we have 

[y] =-&(-6347+27369f-184 156f2 
d = 3  

+ 594 27 f 3  - 15 1 8980f4 + 918 540f') 

This result is the same as that obtained by Katsura [2], 

(3.2.10) 

(3.2.11) 

The first term, $, which is the value corresponding to the hard sphere, agrees with that 
obtained by Luban and Baram [6]. 

3.3. Calculation of&( T )  

Applying the Fouriertransformation to the fourth, fifth and sixth factors in the integrand 
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of (3.1.4), we get 

x Fd((k’ -k( )Fd((k”-k’ ( )  dk dk’dk”. (3.3.1) 

Inserting (2.11) for F d ( k ) ,  we obtain 

D , ( T ) = - $ u ’ ~  1 (l+f)“’(-2df)‘21dlZ(a,, a z , a , ; a , ,  as,a6)  (3.3.2) 
“,...(I6 

where 

x h,/,(a,lx”-x’l) dx dx’x” (3.3.3) 
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Equation (3.3.9) is equivalent to (2.17) in Katsura’s paper [2]. Applying his tech- 
nique used in [3], we obtain the same results. It may be noted that 

[y] = -;( 1.266 904- 3.7325f+ 15.105f’-74.Z83f3 
d = 3  

+ 157.64f “-294.65f ’+ 101.97f 6 ) .  (3.3.10) 

The values of D , ( T ) ,  D2(T)  and D3(T)  obtained in (3.1,10), (3.2.10) and (3.3.10) can 
be used to evaluate the fourth vinal coefficient D( T ) ,  given by (3.1), which is found 
to agree with Katsura [3], as follows, 

[y] =0.28695+1.6342f-23.294f*+54.648f3+70.754f4 
d = 3  

(3.3.11) 

(3.3.12) 

N,,(a, b, c )  = ( 2 ~ ) ” ~  J1,2(a~xX)J, ,2+m(a~)1, /2+n(a~x)x-3’2 dx. (3.3.13) 

The triple sum in (3.3.12) indicates summation over 1, m and n, where I,  m, n are zero, 
all positive even integers, and all positive odd integers. 

The necessary integrals of Nm,(aj,  a,, a*) can be calculated by using “ , ( a ,  b, b) 
given by (3.3.13) for a, b = l , 2 .  These integrals are calculated one by one. In the 
numerical calculation, we truncate the triple infinite summation xi, EL, 1; to the 
finite summation in which ( I ,  m, n )  is taken to be (O,O, O), (O,O, 2), (0,2,2), (O,O, 4), 
(2,2, Z), (1, 1, l),  (1, 1,3),  (1,3,3),  and their permutations. These values are listed in 
table 2. Then we have 

[y] =-(0.481 68+2.927 82f+7.772 11f2-338.00978f’ 

IoR 

d = l  

-125.47066f4- 137.00834f5-51.53897f6). (3.3.14) 

Hence by using (3.1.13), (3.2.11) and (3.3.14). we get 

[y] = 1.018,32-3.9282f+2.727 89f2-52.49022fJ-22.O29 34f4 
d - l  

+ 81.008 34f5 - 51.538 97f ‘. (3.3.15) 
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Table 2. The values of N,,,,>(n, b, e ) ,  a, b, c = 1 or 2. 

0 

0 

0 

0 

0 

0 

0 

0 

- -43 
12 

7 
4 

423 
512 

9 
16 

9 
16 

27 
256 

27 
256 

27 
64 

- 

- 

- 

- 

- 

- 

- 

15 057 
229 376 

371 
I2 288 

371 
12 288 

~ 

- 

- 

7 
2 4 

0 

JI 293 

3 J I  

JI 

0 
JI 
8 16 

9 
16 

0 
JI 

1 

96 
JI 

27 
256 

Jz 

13 5 J I  
24 6 96 

-IS& 

Jz 

Jz 

- - 

- - ~ 

80 20 20 480 

1 - - 

- - 
8 

- 0 - 
48 

- 0 

JI 

- 
48 

- - - 

2 1093 __ - __ 
896 56 114688 

-45 
256 

0 

JI 125 
48 24 6144 

- - 
48 

- - - 

7 
4 

0 

JI 293 
20 20 480 

0 
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Appendix 

This appendix is devoted to the evaluation of the integral 

I = ~ ~ ~ J ” ( Z x ) , ” ( x ) J ” - , ( y x ) x - ”  dx 1 G y S 2 .  ( A I )  

Applying the recurrence formula for the Bessel function ([lo], vol 11, p 12, equation 

to the first and second factors in (Al), we get 

.,(yx)x2-” dx 
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Applying (A2) to the second and third integrals in (A3), we obtain 

The four integrals in (A4) can be obtained from the standard formula ([l l] ,  p 695, 
equation (9.8)) 

w h i c h a p p l i e s a s l o n g a s ( ~ a - b ~ < c , a + b ; a , b > 0 , 2 a b c o s u = a Z + b 2 - c 2 ; R e ~ > - 1 ,  
Re U >  -4). 

Therefore, 

- ‘ % P , “ ( $ q ]  

where a =(2u-3)/2 
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